Comparison of Ultrastructural Cytotoxic Effects of Carbon and Carbon/Iron Particulates on Human Monocyte-Derived Macrophages
نویسندگان
چکیده
In this study, we tested the hypothesis that the presence of iron in carbon particulates enhances ultrastructural perturbation in human monocyte-derived macrophages (MDMs) after phagocytosis. We used 1-microm synthetic carbon-based particulates, designed to simulate environmental particulates of mass median aerodynamic diameter < or = 2.5 microm (PM2.5). Cultures of human MDMs or T-lymphocytes (as a nonphagocytic control) were exposed to carbon or carbon/iron particulates for various time periods and examined by transmission electron microscopy for ultrastructural changes. T-cells failed to internalize either of the particulates and showed no organelle or nuclear changes. Conversely, MDMs avidly phagocytized the particulates. MDMs treated with C particulates exhibited morphologic evidence of macrophage activation but no evidence of lysis of organelles. In contrast, MDMs treated with C/Fe particulates exhibited coalescence of particulate-containing lysosomes. This phenomenon was not observed in the case of C particulates. By 24 hr there was a tendency of the C/Fe particulates to agglomerate into loose or compact clusters. Surrounding the compact C/Fe agglomerates was a uniform zone of nearly total organelle lysis. The lytic changes diminished in proportion to the distance from the agglomerate. In such cells, the nucleus showed loss of chromatin. Although C particles induced no detectable oxidative burst on treated MDMs, C/Fe particles induced a nearly 5-fold increase in the extracellular oxidative burst by treated MDMs compared with untreated controls. Iron bound to C particles catalyzed the decomposition of hydrogen peroxide to generate hydroxyl radicals. Results of these studies suggest that, among particulates of similar size, biologic activity can vary profoundly as a function of particulate physicochemical properties.
منابع مشابه
Inflammatory properties of iron-containing carbon nanoparticles.
Inflammatory responses following exposure of carbon nanoparticles to human macrophage and endothelial cells were employed as indicators of particulate biological activity. Hundred nanometer carbon particles (nC) with and without nonextractable surface-bound iron were synthesized using a templating approach, and human monocyte-derived macrophages (MDM) were exposed to various concentrations of t...
متن کاملQuantification and comparison of TLR2 activity in monocyte-derived macrophages of zebu and crossbred cattle
The present study was conducted to quantify and compare TLR2 (toll-like receptor 2) activity in monocyte-derived macrophages of zebu (Tharparkar) and crossbred (Holstein-Friesian × Jersey × Brown Swiss × Hariana) cattle. The cells were either induced with Pam3CSK4 or kept as control. The TLR2 activity was quantified in terms of IκB-α inhibitory subunit (NFKBIA) messenger RNA (mRNA) copies...
متن کاملNitrate Removal from Aqueous Solutions Using Granular Activated Carbon Modified with Iron Nanoparticles (RESEARCH NOTE)
Nitrate contamination of water resources and the growing concentration of nitrate endanger human health and the environment and considering its reduction strategies from water resources is important. The aim of this study was to investigate the possibility of removal of nitrate from aqueous solutions using granular activated carbon from grape wood coated with iron nanoparticles. The results sho...
متن کاملDIFFERENTIATION OF MONOCYTE DERIVED DENDRITIC CELLS IN SERUM FREE CONDITIONS
Human peripheral blood monocytes (HPBM) were cultured in the absence of human serum and were converted into a state exhibiting a high accessory function expressed by their ability of supporting lymphocyte proliferation. After a prolonged culture in serum free media the monocyte derived cells were highly viable, increased in size and developed veils and dendritiform elongatio'l1s. Paralleli...
متن کاملSynthesis of calcium carbide-derived carbon by mechanochemical reaction of calcium carbide with sulfur, iron sulfide and zinc oxide
In the present work, we report a novel design and preparation for the mechanochemical synthesis of calcium carbide-derived carbon (CaC2-CDC) at ambient temperature. Thermodynamic calculations confirmed the possibility of calcium carbide-derived carbon formation by the reaction of calcium carbide with sulfur, iron sulfide and zinc oxide at ambient temperature. The CDCs were synthesized by the ba...
متن کامل